报告人:王汉权教授
报告题目:A FOURIER COLLOCATION METHOD FOR SCHRODINGER-POISSON SYSTEM WITH PERFECTLY
MATCHED LAYER
报告摘要:
(1)Fourier spectral method has been widely used to solve Schrodinger equation with constant coefficients. It meets difficulties and loses its efficiency when solving Schrodinger equation with variable coefficients. We show that Fourier collocation method can be applied to efficiently solve Schrodinger equation with variable coefficients. The method is characterized by the expansion of the solution in terms of Fourier series-based functions, while the expansion coefficients are computed so that the equation is satisfied exactly at a set of collocation points.
(2) We implement the method to solve the Schrodinger-Poisson (SP) system with perfectly matched layer (PML), which is a Schrodinger-type equation with variable coefficients. We carry out numerical simulation for the SP system by employing splitting method in time and Fourier collocation method in space, respectively. Numerical results show that the Fourier-collocation method coupled with PML technique can absorb well the outgoing waves governed by the Schrodinger equation when the wave goes out of the computational boundary.
报告时间:2023.06.10 下午14:00-17:00
报告形式:腾讯会议; 会议号:327-577-847
获取会议密码请发邮件至:yangchang@hit.edu.cn
报告人简介:王汉权,男,新加坡国立大学博士。现任云南财经大学特聘教授、统计学博士生导师、云南财经大学统计与韦德国际1946数学专业硕士生导师、云南财经大学学术委员会委员、中国数学会计算数学分会理事、四川大学韦德国际1946博士生导师等。科研活动主要关注计算数学与科学工程计算方向,感兴趣的研究领域包括:计算数学及其在玻色-爱因斯坦凝聚态物理、材料中的晶体位错运动现象、基本物质(原子、分子、等离子体等)在强激光场下的物理性质与反应、非线性光学等中的应用。从事科学研究的领域包括各种偏微分方程、随机偏微分方程的数值解法(有限差分法、谱方法、谱元法等)的设计与应用,泛函极值问题求解方法设计与应用,最优化理论方法与应用。现主持云南省基础研究项目重点项目一项。已经主持完成国家自然科学基金4项(其中包括重大计划项目培育项目1项、面上项目1项、地区基金1项、青年基金1项),“教育部留学回国人员科研启动基金”等。发表论文50余篇论著(其中,SCI、EI收录的高水平研究论文有四十余篇,在科学出版社出版专著2部、教材2本)。2013年入选教育部新世纪优秀人才支持计划。2014年获得“云南省有突出贡献优秀专业技术人才”称号。2017年获得云南省自然科学奖三等奖一项。